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ABSTRACT
Dehydration (body water deficit) is a physiologic state that can have
profound implications for human health and performance. Unfortu-
nately, dehydration can be difficult to assess, and there is no single,
universal gold standard for decisionmaking. In this article, we review
the physiologic basis for understanding quantitative dehydration as-
sessment. We highlight how phenomenologic interpretations of de-
hydration depend critically on the type (dehydration compared with
volume depletion) and magnitude (moderate compared with severe)
of dehydration, which in turn influence the osmotic (plasma osmo-
lality) and blood volume–dependent compensatory thresholds for
antidiuretic and thirst responses. In particular, we review new find-
ings regarding the biological variation in osmotic responses to de-
hydration and discuss how this variation can help provide a
quantitative and clinically relevant link between the physiology
and phenomenology of dehydration. Practical measures with empir-
ical thresholds are provided as a starting point for improving the prac-
tice of dehydration assessment. Am J Clin Nutr 2013;97:455–62.

INTRODUCTION

Dehydration (body water deficit) is a common physiologic state
that can have profound implications for human health (1–7) and
performance (8). Although mild dehydration can be easily cor-
rected and is principally associated with impaired physical per-
formance (8), it may be linked with common public health
disorders if left chronically untreated (9, 10). A greater severity of
dehydration can result in significant medical costs, morbidity, and
mortality across the life span (11, 12). Although the physiology of
osmotic and vascular volume responses to dehydration in humans
have been well described (13, 14), the phenomenology of de-
hydration assessment has not. For example, there is no single,
universal gold standard method of dehydration assessment for
clinical decision making (7, 15, 16), which contributes greatly to
the difficulty that clinicians encounter when trying to accurately
assess dehydration in practice (17–25). This discordance between
the physiology and phenomenology of dehydration is a recog-
nized source of clinical confusion (17) for which clarity is needed
to improve the practice of dehydration assessment.

In this review, we highlight how phenomenologic interpreta-
tions of dehydration depend critically on the type (dehydration

compared with volume depletion) and magnitude (moderate
compared with severe) of dehydration, which, in turn, influence
the plasma osmolality (Posm)5– and blood volume (BV)–de-
pendent compensatory thresholds for antidiuretic and thirst re-
sponses. We also discuss the recent application of biological
variation analysis to osmotic responses during dehydration for
its novel potential as an adjunct (17) to clinical decision making.
Posm is the primary focus of this review because it is the key
regulated variable in fluid balance (13, 14, 26–28), and it is
commonly used to screen for dehydration and complement more
quantitative differential diagnoses of dysnatremias and other
diseases (3, 5, 28–30). The osmolality of other body fluids
commonly used to assess dehydration (ie, urine and saliva) are
also mentioned as is the practical assessment of volume de-
pletion. Descriptions of other potential methods of dehydration
and volume-depletion assessment have been provided by other
authors (7, 16, 19, 31, 32). Complementary reviews (33) are
similarly suggested for detailed information related to sodium
(natriuresis and appetite) and nonosmotic contributors (eg,
baroreceptors) to osmotic homeostasis.

FUNDAMENTALS OF OSMOTIC RESPONSES TO
DEHYDRATION IN HUMANS

In its simplest form, the net body water balance is generally the
zero sum of food (water and solute) and fluid intake minus in-
sensible and obligatory renal water losses (7). Fluid intakes,
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losses, and needs vary widely in free-living people and are
governed heavily by physical activity, environmental stress, and
cultural and habitual cues (7, 8, 34–36). Under conditions of
ordinary daily body water flux, osmotic constancy is maintained
by the secretion of the antidiuretic hormone arginine vasopressin
(AVP), which directly influences renal water excretion and
conservation in response to intravascular fluid shifts (that result
from thermal and positional changes) and ad libitum food and
fluid intakes (14, 26, 37–39). Thus, Posm remains stable as the
kidneys modify urine osmolal and water excretion in accordance
with ordinary living conditions. When a body water deficit in
excess of ordinary flux occurs (dehydration), threshold increases
in Posm (primary) and decreases in BV (secondary) produce
compensatory water-conservation (renal) and water-acquisition
(thirst) responses (14, 26). As a result, the discriminatory power
of renal excretion measures for the detection of dehydration is
always secondary to changes in Posm (28).

AVP is synthesized in supraoptic and paraventricular nuclei
of the hypothalamus and is released from the posterior pituitary
(14, 26). Basal AVP concentrations can fluctuate considerably
in response to ordinary postural and skin-temperature (skin blood
flow) shifts in BV (39). However, a threshold reduction in BV
.10% is required to elicit greater (compensatory) AVP secre-
tion, whereas smaller reductions in BV primarily act to enhance
the sensitivity of the AVP response to changes in Posm (40–42).
Osmotic homeostasis (,1–2% deviation in Posm) is also
maintained by basal AVP regulation, but compared to BV smaller
threshold increases in Posm (.2%) produce intracellular de-
hydration and compensatory increases in AVP secretion, renal
water conservation, and thirst (14, 43).

When the net balance between water intake and output be-
comes negative (dehydration), renal water conservation is in-
sufficient to restore fluid balance. Obligatory renal water losses
persist, and fluid acquisition must occur, to restore the body water
balance (28, 44). However, the Posm threshold for thirst is highly
variable in people (27, 45, 46), and thirst mechanisms are subject
to numerous influences unrelated to the body water balance
(47). In humans, fluid losses (because of sweating, vomiting, or
diarrhea) can easily outpace oral intakes. Peripheral osmor-
eceptors (eg, gut) (14) and oropharyngeal cues trigger thirst
satiety well before volume is fully restored (26, 48, 49), even
when dehydration is substantial (50). This transitory response
acts to buffer the presystemic impact of ingested fluids (14) but
often leads to involuntary dehydration when water is consumed
without food (solute) (47, 51).

TWO CRITICAL CAVEATS TO UNDERSTANDING
OSMOTIC RESPONSES TO DEHYDRATION

Caveat 1: a sufficient body water–deficit threshold must be
reached before compensatory reactions become reliably
engaged

Percentage reductions in body mass (Bm) that exceed typical
human variation are depicted in Figure 1, whereby a change in
Bm is equated with a change in total body water (TBW). The
change in Bm is used as the criterion value for practical pur-
poses but also because the random measurement error for tracer-
dilution methods (the change in TBW) is larger than the same
for Bm (52). Typical human variation is defined as the day-to-
day CV in Bm, which is ,1.0% when fluid intake and activity

are tightly controlled (53, 54). As a consequence, day-to-day
change in Bm must exceed 1% and approach 2% (ie, O23 1.65)
to be considered truly atypical (P , 0.05; 1-tailed test).
Therefore, day-to-day fluctuations in Bm ,1–2% cannot be
reliably associated with perturbations in body water beyond
ordinary (sinusoidal) physiologic and behavioral body water re-
gulation (55). Under these circumstances, renal water excretion
or conservation is a reflection of the flux produced by fluctuating
AVP concentrations in response to widely ranging dietary fluid
intakes, osmolar loads, and ordinary compartmental fluid shifts
without discernible changes in TBW, Posm, or, by extension,
intracellular hydration (26, 37–39, 56). Thus, day-to-day fluc-
tuations in Bm or TBW within this range should be interpreted
as euhydrated (the state of normal hydration).

Caveat 2: body water–deficit threshold for dehydration
depends critically on the type and magnitude of the body
water deficit incurred

A 2% increase in Posm (w5 mmol/kg) and a 10% decrease in
BV (w0.5 L) are commonly quoted physiologic thresholds for
compensatory water conservation and acquisition (Figure 1) (26,
40, 43). Posm increases to greater thanw5 mmol/kg in response
to dehydration via sweat losses, fluid restriction, or osmotic
diarrhea (hypertonic hypovolemia) when those losses exceed
w2% of Bm (1.4 L at 70 kg) (18, 54, 57–59), which is a
threshold that is also consistent with negative physiologic out-
comes (7, 8, 60). The variation in sweat sodium losses in people
may (61) or may not (62) add uncertainty to the magnitude of
the osmotic response to a given water deficit, depending on the
delicate balance between sweating rate and sweat sodium con-
centrations, whereby

Volume3 concentration ¼ content ð1Þ

Similar considerations may be made of alterations in extra-
cellular volume [plasma volume (PV)], but on the basis of the
regression equations shown in Figure 2, the anticipated decrease
in PV is only w0.14 L at w2% dehydration (63) because of the
rapid osmotic redistribution of water from the intracellular to the
extracellular (interstitial and intravascular) fluid compartment
(61, 64). Therefore, hypertonic hypovolemia results in a small
ratio of plasma-to-TBW losses (w1:10). Hypertonic hypo-
volemia would not produce intravascular volume losses .10%
of BV until a 7% loss of Bm was achieved (Figure 2) (63, 65).
This effect illustrates the primary influence of Posm as the sti-
mulus for early compensatory water-conservation and -acquisition
responses (40–42). Although the osmolalities of other body
fluids (eg, urine and saliva) also increase in parallel with Posm
and afford a good diagnostic accuracy for dehydration under ideal
circumstances (54), they remain secondary (25) and are inferior to
Posm for the detection of dehydration for additional reasons.

Isotonic hypovolemia can occur in response to diuretic use,
cold or altitude exposure, secretory diarrhea, and vomiting (6, 18,
42, 44, 63, 65–68). The ratio of PV-to-TBW loss is approxi-
mately twice as large (w1:5) with isotonic hypovolemia than
with hypertonic hypovolemia (63, 65, 68). This type of body
water loss is often referred to as salt-depletion dehydration (44)
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or volume depletion (24, 30) because the added solute loss
produces little change in Posm but proportionally greater PV
reductions. When there are large losses of solute from the ex-
tracellular space, there is a minimal or no osmotic gradient to
pull fluids from the larger intracellular space (61, 64). As a re-
sult, a smaller w4% loss of Bm (2.8 L at 70 kg; 0.56-L PV loss)
must be incurred to achieve the 10% BV threshold for com-
pensatory water conservation and acquisition with isotonic hy-
povolemia (Figures 1 and 2).

Methods for the assessment of volume depletion vary widely,
with no single, standard approach advocated in the medical or
related literature (16, 19). The use of a simple 20-beats/min sit-to-
stand heart-rate response provides high specificity but low
sensitivity and only marginal diagnostic accuracy even when
dehydration is severe (65, 69). BV losses .10% (w1.0 L),
whether measured directly (70) or by using lower body negative
pressure to simulate equivalent blood losses (71), are required
for an improved test sensitivity. The type of water loss with
a gastrointestinal illness can be unpredictable or mixed (18, 44),
and thus, the presence of both types of dehydration probably

explains much of the difficulty associated with their interpretation
(30, 44), in which neither Posm nor BV thresholds for compensatory
responses are reached (Figure 1). Under these circumstances, a more
heuristic assessment approach is needed (19, 22, 24, 28).

BIOLOGICAL AND METHODOLOGIC VARIATION

Human variation in osmotic responses to dehydration is pri-
marily biological, but the methodology used to study osmotic
responses can also contribute to variation. An understanding and
appreciation for these sources of variation can inform probabi-
listic decision making related to the diagnosis of dehydration (54,
58, 72) and, likely, volume depletion as well (65).

Threshold and slope of AVP and thirst responses (biology)

It is common to refer to both the threshold and slope of the
Posm-AVP relation. The threshold Posm value is associated with
the initial increase in AVP secretion above baseline, whereas the
slope is the responsiveness (or sensitivity) of the AVP system for

FIGURE 1. Body water regulation in response to dehydration. Schematic includes the 2 major types of dehydration, their typical causes, and the estimated
magnitude of dehydration required to stimulate a primary osmotic- or volume-dependent response for compensatory water conservation and acquisition (26).
A change in TBW was equated with a change in body mass (1 L = 1 kg), whereby dehydration was expressed as a percentage of body mass in accordance with
(D body mass O body mass) 3 100. Plasma volume and TBW losses are depicted to scale as are their 1:10 and 1:5 ratios for hypertonic and isotonic
hypovolemia, respectively. Dashed arrows represent negative feedback. Ang II, angiotensin II; AVP, arginine vasopressin; BV, blood volume; Posm, plasma
osmolality; TBW, total body water.
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any given increase in Posm above the threshold value. The os-
motic control of AVP, when defined by using slope and sensitivity
terms, is highly variable. For example, there appears to be a
polygenetic basis for the variation in the slope of the AVP-Posm
relation and Posm thresholds for AVP and thirst (46). The re-
lations are highly correlated between monozygotic, but not
dizygotic, twin pairs (46). For a healthy and heterogeneous pop-
ulation, the individual AVP-Posm slopes vary 10-fold in individuals
but are highly correlated within a subject (r = 0.94). The osmotic
threshold for AVP varies less in individuals (w8 mmol/kg) but
shows only a moderate correlation within subjects (r = 0.61).

The individual variation of Posm set points and thresholds
for both AVP release and unequivocal thirst relative to what has
been commonly reported in the literature for group means is
illustrated in Figure 3 (27). The variation contains the potential
influences of sex (73), but not age (74), on osmotic responses.
Posm thresholds for AVP release and unequivocal thirst differ
in subjects by w10 mmol/kg. The largest difference between
Posm thresholds for AVP release and unequivocal thirst within
an individual was 17 mmol/kg (subject 5). Also of importance
is the difference in the Posm set point relative to the Posm
threshold for AVP release and unequivocal thirst; for example,
subjects 7 and 15 fell on opposite extremes. Taken together, the
data in Figure 3 show that plasma osmotic responses (AVP and
thirst) vary considerably in people and have a strong genetic
component. These data may partly explain the 20-mmol/kg
range in Posm often reported for population reference intervals
(eg, 280–300 mmol/kg). Differences in health and hydration
states must also contribute to this range, but the volume of fluid
ingested and its proximity to measurement can also make an
important methodologic contribution (43, 75), even in well-
controlled laboratory situations.

Threshold and slope of AVP and thirst responses
(methodology)

Some of the variation in the Posm threshold for AVP and thirst
is methodologic rather than physiologic. In this context, moderate
water loading is one methodology used to standardize Posm and
suppress AVP secretion before imposing an intervention such as
saline infusion or water restriction (dehydration). However, this

approach produces low basal Posm values and results in threshold
and slope calculations dissimilar from studies in which ad libitum
water consumption was permitted before testing (13, 43, 45, 76).
Suppressed Posm thresholds for AVP release and thirst in studies
that used water-loading methodologies, although experimentally
sound, may be unrealistic for free-living people.

Interpreting osmotic responses after water loading should be
approached with caution. For example, the application of re-
gression equations for AVP-Posm and AVP–urine osmolality
(Uosm), which has been commonly adopted to explain the phy-
siology of osmotic responses, indicated that a near maximally
concentrated urine (w1100 mmol/kg) should occur at a Posm of
292 mmol/kg and AVP value of 4.6 pg/mL (43). This result
contrasts with everyday observations but is easily understood
from a starting Uosm:Posm ratio of approximately

187 :282 ¼ 0:66 ð2Þ

which can be back calculated from a starting AVP value of 1 pg/
mL in these experiments (43). If we assume unity between
plasma and urine electrolyte concentrations and accept that urea
contributes 40% to Uosm (77), any Uosm:Posm ratio #1.5 is
consistent with electrolyte-free renal water clearance and a
water-loaded state (77). In contrast, the change in Posm (12
mmol/kg) that is responsible for the 1100-mmol/kg Uosm is
entirely consistent with a hyperosmolal state:

DUosm ¼ 2503 0:35DPosm or D12 Posm
¼ D1050 Uosm ð27Þ ð3Þ

Therefore, both aspects of osmoregulation (ie, the variation
and basal set point) are very important considerations when Posm
is used to assess dehydration. When a person’s true Posm
baseline is not known, biological variation analysis can provide
confident probabilistic estimates of dehydration by using both
single and serial measures of Posm.

FIGURE 3. Means [men (C); women (n)] from 4 basal plasma osmo-
lality samples under conditions of ad libitum fluid intake in 15 healthy
subjects. Boundaries of rectangular boxes represent osmotic thresholds for
unequivocal thirst (top) and AVP secretion (bottom) determined from re-
gression analysis during hypertonic saline infusion. Dashed lines represent
group means often cited in the literature. Adapted from reference 13 with
permission (copyright 1976; The Endocrine Society). AVP, arginine vaso-
pressin; Posm, plasma osmolality.

FIGURE 2. Linear regression of plasma volume change (y) and dehydra-
tion [%D body mass (x)] after induction of hypotonic (sweat) or isotonic
(diuretic) body water losses. Equations for plasma volume contraction are as
follows: diuretic, y = –3.8 + 3.6x; sweat, y = 1.35 + 2.8x. From Cheuvront
et al (63).
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Biological variation of Posm (single measure)

Claude Bernard’s concept of the tightly regulated milieu in-
térieur is commonly referenced by extension as a narrow 1–2%
variation in Posm. Surprisingly few studies have quantified the
intraindividual variation in Posm from day to day, but they have
been consistent with this concept and reported values that
ranged from 0.8% to 1.4% (2–4 mmol/kg), with the exclusion of
the analytic (measurement) variation (w0.5% or 1 mmol/kg)
(54, 78, 79). These studies (54, 78, 79) were not stratified and,
thus, included contributions to the variation because of sex (73)
and age (74). Although most measures of physiologic interest
have a larger interindividual variation than intraindividual var-
iation (80), the 2 measures are similar for Posm. This outcome
seems to contrast with wide population reference intervals until
it is considered that the variation between subjects shrinks when
measurement methodology and other preanalytic factors are
controlled for (80). The ratio of intraindividual to interindividual
variation (index of individuality) in Posm ranges from 0.9 to 1.4
(54, 78, 79). The index of individuality provides a statistical
framework to distinguish pathologic states such as dehydration
from a single measurement. Any atypical value for a given in-
dividual, relative to the larger population of individuals, will go
unnoticed when the ratio is ,0.6 but will be captured when the
ratio is .1.4 (80, 81). The probability of identifying an atypical
value increases rapidly as the ratio exceeds 0.60 and approaches
unity (1.00) (81).

The index of individuality concept for Posm is shown in
Figure 4 and includes Uosm and saliva osmolality (Sosm) for
comparison (54, 58). The interindividual variation is depicted
by the differences in means (dots), whereas the intraindividual
differences (typical day-to-day variation) in body fluid measures
are represented by the range (bars) that surrounds each in-
dividual mean. “X” values in Figure 4 represent body fluid
measures in response to a –2.5-L loss of body water (–3% de-
hydration). When graphed relative to the respective dehydration
thresholds determined empirically by receiver operating char-
acteristic curve analysis, probabilities of false-negative and
-positive findings become apparent. The index of individuality
for Posm was 0.90. For contrast, ratios for Uosm and Sosm were
0.49 and 0.27, respectively (54). As illustrated in Figure 4, an
atypical value for Posm (X, dehydrated) is more easily and ac-
curately detected than an atypical value for Uosm or Sosm,
despite the expected linear associations commonly reported
when the dehydration level against Sosm or Uosm is regressed.
The complete biological variation analysis (54) supports a Posm
threshold of 301 6 5 mmol/kg, which is mathematically identical
to the –0.568C depression in the freezing point proposed by
Olmstead et al (82) .50 y ago as a positive test for hypernatremia.
We recommend the inclusion of a variance term (65 mmol/kg) to
account for biological differences in basal set points (54) and note
its consistency to values (295–300 mmol/kg) reached by consensus
(24) as consistent with impending dehydration.

Biological variation of Posm (serial measures)

Reference change values (80) allow the observation of serial
changes in Posm to be interpreted in terms of diagnosing de-
hydration (54, 58). Reference change values can be calculated
(when the proper statistical assumptions are met) (80, 83)

by using the sum of analytic and intraindividual variations in
Posm (80). The probability that a measured change in Posm
is atypical can then be determined (58, 80). As illustrated in
Figure 5, atypical changes in Posm begin above the daily 2–4-
mmol/kg constancy threshold and provide increasing predictive
certainty that dehydration has occurred in accordance with the
equation

Probability = 12 e20.327x (4)

where x is the measured change in Posm (58). As a result, the
probability that a change in Posm reflects the occurrence of de-
hydration can be gauged in both quantitative and qualitative terms.

FIGURE 4.Means (C) and absolute ranges of plasma (A), urine (B), and
saliva (C) osmolality from 3 samples taken from each of 18 normally hy-
drated (euhydrated) subjects. “X” values represent a single sample from the
same subjects after dehydration to –3.3 6 0.6% of body mass. Dehydration
thresholds were determined by using receiver operating characteristic curve
analysis (value that provided the highest diagnostic accuracy) with the use of
both euhydrated and dehydrated matched pairs. Data are a composite from
references 54 and 58. Posm, plasma osmolality; Sosm, saliva osmolality; Uosm,
urine osmolality.
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LIMITATIONS OF USE OF OSMOMETRY FOR
ASSESSMENT OF DEHYDRATION

It is clear that Posm is critical for body water regulation, and
plasma is a unique body fluid for use in the assessment of de-
hydration. Although Uosm and Sosm have also been used suc-
cessfully for this purpose (84, 85), human variation in these body
fluids seem to limit their potential utility (Figure 4). The greater
variation in Uosm and Sosm is not surprising. For example,
#40% of Uosm is attributable to urea (compared with only
w1% for Posm), and thus, the addition of solute in the form of
antecedent diet or catabolic byproducts of protein metabolism
associated with exercise or illness may increase Uosm by the
addition of solute (86, 87). Similar limitations apply for urine-
specific gravity, whereas all urine-concentration measures are
subject to timing and uniformity concerns that manifest empir-
ically as differences between first morning, 24-h, and spot urine
measures (88) in addition to acute drinking and exercise behaviors
(59). The discriminatory power of renal excretion measures for
the detection of dehydration is clearly secondary to changes in
Posm (28), but this does not, in any way, minimize the critical use
of Uosm (and its relation to Posm) in the measurement of renal
function related to the phenomenologic interpretation or differ-
ential diagnosis of other disorders (5, 28, 29). With regard to
saliva, Sosm is subject to practical use issues related to simple
oral artifacts (54, 89). Sosm may also be affected by anything that
affects salivation (salivary flow), which includes a multitude of
factors (85). Limitations of the use of Posm for the assessment of
dehydration must also be acknowledged.

Posm and plasma tonicity (effective osmolality) are very si-
milar quantities in health (90). However, substances in the blood
that raise osmolality but not tonicity (ineffective or penetrating
solutes) have the potential to confound dehydration assessment.
The calculation of the osmol gap will reveal contributions from
ineffective solutes, but the direct measurement of Posm is always
recommended for dehydration assessment because of the large
acceptable error in calculated osmolality (610 mmol/kg) (90).
Fluctuations in the volume of body fluid compartments will also
affect Posm. For example, consumption of a large meal can in-
crease Posm because of the osmolar shift of water out of the
vasculature and into the gut (91). In contrast, simple changes in
posture (42, 92) and even low-intensity exercise (#40% maximal

oxygen uptake) (93, 94) produce little effect, probably because
osmotic concordance is not disrupted by the 2-way fluid flow
between interstitial and intravascular spaces that share the same
osmotic pressures (61, 64, 93). Higher exercise intensities in-
crease Posm as a result of greater intravascular volume losses
and the presence of lactic acid, but recovery appears complete in
#20–30 min (93). Finally, as stated earlier, Posm is of no use for
the detection of volume depletion. When this distinction is
made, coupled with the importance of biological variation and
other issues discussed herein, criticisms for adopting Posm as
a gold standard for dehydration assessment (15, 95–97) are
minimal.

CONCLUSIONS AND FUTURE DIRECTIONS

Dehydration is a common physiologic state with implications
for health and performance (1–8). Although the physiology of
dehydration is well described, it remains difficult to assess ac-
curately in practice. In this review, we highlighted how the
phenomenologic interpretation of dehydration depends critically
on the type and magnitude of dehydration, which directly affect
threshold osmotic and volume-dependent compensatory anti-
diuretic and thirst responses. We also emphasized how knowl-
edge of biological variation improves our broader understanding
of the physiology that underpins the osmotic response to de-
hydration in humans and affords important diagnostic insight for
dehydration assessment. To help improve the practice of de-
hydration assessment, a single, atypical Posm threshold value
of 301 6 5 mmol/kg is suggested (54) as a starting point for
this purpose, along with a nomogram (58) for the estimation of
the probability of dehydration when serial changes in Posm are
measured as an adjunct to quantitative differential diagnostic
procedures. No standard method has been advocated for the
assessment of volume depletion (16, 19), but a 20-beats/min sit-
to-stand cutoff provides high test specificity for both dehy-
dration and volume depletion (65, 69). Because Posm requires
the collection of blood and the preparation of plasma, future
efforts to identify or develop an acceptable noninvasive surro-
gate for Posm would benefit clinical, sports, and military med-
icine communities (7). A test with high diagnostic accuracy for
moderate volume depletion is also needed.
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